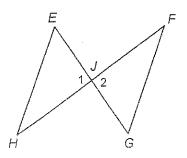

Chapter 4 (part 2)

Part E: In problems 1-3, write complete proofs.

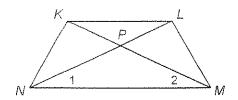
1. Given: $\angle BCA \cong \angle DCA$ Conclusions Justifications

 $BC \cong DC$


Prove: $\angle B \cong \angle D$

2. Given: $\angle H \cong \angle F$ Conclusions Justifications

J is the midpoint of EG


Prove: $\angle E \cong \angle G$

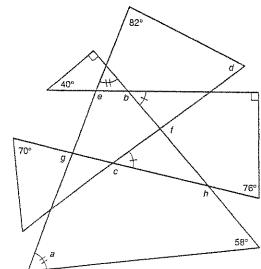
3. Given: $KM \cong LN$ Conclusions Justifications

Prove: $\angle 1 \cong \angle 2$

 $KN \cong LM$

Chapter 5

Part A

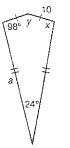

Complete each statement. *Give an answer besides square.

- 1. *The diagonals of a —?— are equal in length.
- 2. The three midsegments of a triangle divide the triangle into —?—.
- 3. An equiangular quadrilateral is usually called a —?—.
- 4. In an isosceles triangle, the base angles are —?—.
- 5. The diagonals of a parallelogram —?— each other.
- 6. Each angle of a regular octagon measures —?—.
- 7. The length of a midsegment of a trapezoid is the —?— of the lengths of the bases.
- 8. The vertex angles of a kite are —?— by the diagonal.
- 9. The consecutive angles of a parallelogram are —?—.
- 10. *The diagonals of a —?— are perpendicular bisectors of each other.
- 11. The length of a midsegment between two sides of a triangle is —?— the length of the third side.
- 12. The sum of the measures of the angles of a decagon is —?—.
- 13. The midsegment of a trapezoid is —?— to the two bases.
- 14. The diagonals of a kite are —?—.
- 15. The opposite angles of a parallelogram are —?—.

Part B

Determine the measure of each lettered angle in the figure below.

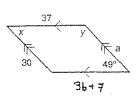
- 1. $a = _____$
- **2.** *b* = _____
- 3. *c* = ____
- **4.** d =
- 5. *e* = _____
- 6. f =_____
- 7. *g* = ____
- 8. *h* = _____


Part C

1-3. Give the value for each variable indicated.

1. Perimeter = 64

x = _____


y = ____

2. *a* = _____

x =

y = ____

- 3. a =_____
 - w = ____
 - x = ____
 - y = ____

2a+1 x 5a+7 y 60° 4a+21 56°

Part D: Use coordinates to prove the following.

1. Given: X = (2, -1), Y = (1, 6), and Z = (-4, 1)

Prove: ΔXYZ is an isosceles triangle

Conclusions

Justifications

- 0. X = (2, -1), Y = (1, 6), and Z = (-4, 1)
- 0. Given

Chapter 5 1/2

Part A: Identify each statement as true or false.

- 1. You can determine the slope of a segment if you are given the coordinates of its endpoints.
- 2. The slope of a line depends on which points on the line you choose to calculate it.
- 3. If two distinct lines on a graph have the same slope then they are perpendicular.
- 4. If a graph has slope q and y-intercept (0, r) then the equation for the line is y = rx + q.
- 5. If m is the slope of \overline{AB} , then the slope of a line parallel to \overline{AB} has slope -m.

Part B: Find the slope, midpoint, and length of each of the segments below.

1. *AB*:

slope = _____

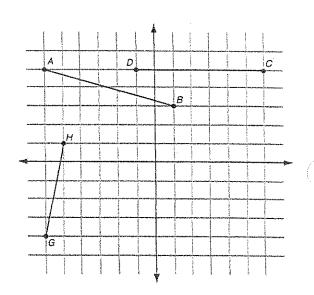
midpoint = ____

length = _____

2. GH:

slope = ____

midpoint = ____


length = ____

3. *CD*:

slope =

midpoint = ____

length = _____

Part C: Determine whether the lines are parallel, perpendicular, or neither. State the reason for your conclusion. The coordinates of the points are given below.

1.
$$\overrightarrow{WX}$$
 and \overrightarrow{YZ}

2.
$$\overrightarrow{WX}$$
 and \overrightarrow{XY}

Part D

- 1. Write the equation of a line through the points with coordinates (4, 2) and (5, 1).
- 2. Write the equation of a line that is perpendicular to y = 3x 2 and passes through the point with coordinates (6, 0).
- 3. Write the equation of the perpendicular bisector of the segment with endpoints (-2, -1) and (8, 5).

Part E: Graph the lines on the coordinate graph at the right.

1.
$$y = \frac{2}{5}x + 2$$

2.
$$x + 3y = 6$$

Part F: Solve the systems of equations.

1.
$$x = y + 10$$

 $2y = x - 6$

2.
$$2x + 3y = -1$$

 $3x + 5y = -2$

			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			:
) I
			No. 11.