Chapter 4 (part 2)

Part E: In problems 1-3, write complete proofs.

Targ .

Given: $\angle BCA \cong \angle DCA$

 $BC \cong DC$

Prove: $\angle B \cong \angle D$

Conclusions

6. LBCA = LDCA; BC=DC

1. AC TAC

2. DABC & DADC

3. LB=LD

Justifications

o. Given

1. Reflexive

2. SAS. 2

3. CPCTC.

2. Given:

 $\angle H \cong \angle F$

J is the midpoint

of EG

 $\angle E \cong \angle G$ Prove:

Conclusions

6. H= 4F Jis mapt of EG

1,4242

2, E) = JG

3. DEJH = DGJF

Conclusions

A.LE = LG

Justifications

O. Given

1. Vertical & thm.

2. Defn. of mapt.

3. SAA =

4 CPCTC.

3.

Given: $KM \cong LN$

 $KN \cong LM$

Prove:

 $\angle 1 \cong \angle 2$

2. AKNM = ALMN

3.4= 42

Justifications

O. Given

1. Reflexive

2.555\$

3 CPCTC

Chapter 5

Part A

Complete each statement. *Give an answer besides square.

- 1. *The diagonals of a —?— are equal in length. rectangle/ Isosceles trap.
- 2. The three midsegments of a triangle divide the triangle into —?—. 4 conquent Δ 'S
- 3. An equiangular quadrilateral is usually called a _?_ rectangle
- 4. In an isosceles triangle, the base angles are —?—. CONGIVENT
- 5. The diagonals of a parallelogram —?— each other. bisect
- 6. Each angle of a regular octagon measures —?—. \35°
- 7. The length of a midsegment of a trapezoid is the —?— of the lengths of the bases. OVEYCOC
- 8. The vertex angles of a kite are —?— by the diagonal. O'Sected
- 9. The consecutive angles of a parallelogram are -? -. Supplementary
- 10. *The diagonals of a —?— are perpendicular bisectors of each other. Thombous
- 11. The length of a midsegment between two sides of a triangle is —?— the length of the third side.
- 12. The sum of the measures of the angles of a decagon is —?—. 1440
- 13. The midsegment of a trapezoid is —?— to the two bases. Daralle
- 14. The diagonals of a kite are —?—. Perpendicular
- 15. The opposite angles of a parallelogram are —?—. Congruent

Part B

Determine the measure of each lettered angle in the figure below.

1.
$$a = 61^{\circ}$$

3.
$$c = 130^{\circ}$$

4.
$$d = 65^{\circ}$$

5.
$$e = 111^{e}$$

7.
$$g = 83^{\circ}$$

8.
$$h = 144^{\circ}$$

Part C

Give the value for each variable indicated. 1-3.

1. Perimeter = 64
$$a = 22$$

$$x = 98^{\circ}$$

$$y = 40^{\circ}$$

2.
$$a = 30$$
 $b = 10$
 $x = 49$
 $y = 131$

$$3b+7=37$$
 $3b=30$
 $b=10$

3.
$$a = \frac{2}{w = 124^{\circ}}$$

 $x = 120^{\circ}$
 $y = \frac{50^{\circ}}{}$

$$\frac{2a+1+4a+21}{2} = 5a+7$$
 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

$$3a+11=Sa+7$$
 $a=2$

Part D: Use coordinates to prove the following.

1. Given:
$$X = (2, -1), Y = (1, 6), \text{ and } Z = (-4, 1)$$

 ΔXYZ is an isosceles triangle Prove:

Conclusions

-	NAME OF TAXABLE PARTY.	 		

Justifications

0.
$$X = (2, -1), Y = (1, 6), \text{ and } Z = (-4, 1)$$

1. $XY = \sqrt{(2-1)^2 + (-1-1e)^2} = \sqrt{1+49} = \sqrt{50}$
 $YZ = \sqrt{(1+4)^2 + (6-1)^2} = \sqrt{50}$

1.
$$XY = \sqrt{(2-1)^2 + (-1-6)^2} = \sqrt{1+49} = \sqrt{50}$$

 $YZ = \sqrt{(1+4)^2 + (6-1)^2} = \sqrt{50}$

Chapter 5 1/2

Part A: Identify each statement as true or false.

- 1. You can determine the slope of a segment if you are given the coordinates of its endpoints.
- The slope of a line depends on which points on the line you choose to calculate it. Folse
- 3. If two distinct lines on a graph have the same slope then they are perpendicular. False
- 4. If a graph has slope q and y-intercept (0, r) then the equation for the line is y = rx + q.
- 5. If m is the slope of \overline{AB} , then the slope of a line parallel to \overline{AB} has slope -m. False

Part B: Find the slope, midpoint, and length of each of the segments below.

1. AB: (-4.5)(1.3) $slope = \frac{-2}{7}$ $\frac{3-5}{1+6} = \frac{-2}{7}$

slope =
$$\frac{-2}{7}$$

midpoint = (-2.5, 4) (-6+1, 5+3) (-25, 4)

3.
$$CD:(-1.5)(6.5)$$
 $5-5=0$ $6+1=7$

Part C: Determine whether the lines are parallel, perpendicular, or neither. State the reason for your conclusion. The coordinates of the points are given below.

1.
$$\overrightarrow{WX}$$
 and \overrightarrow{YZ}

1.
$$\overline{WX}$$
 and \overline{YZ}
 $\overline{WX} = \frac{2-6}{3-1} = \frac{2}{2} = 1$
 $\overline{YZ} = \frac{4-1}{8-5} = \frac{3}{3} = 1$

Part D. Parallel

Part D. Norther

2.
$$\overrightarrow{WX}$$
 and \overrightarrow{XY}

$$NX = 1$$
 $XY = 1 - 2$ $5 - 3 = 2$

Part D

1. Write the equation of a line through the points with coordinates (4, 2) and (5, 1).

Dellioster i region morkaneet no

$$y=-x+b$$
 $y-1=-1(x-5)$
 $y=-x+5$
 $y=-x+5$
 $y=-x+6$

2. Write the equation of a line that is perpendicular to y = 3x - 2 and passes through the point with coordinates (6, 0).

$$M=\frac{1}{3}$$

$$y-0=-\frac{1}{3}(x-6)$$

 $y=\frac{1}{3}x+2$

3. Write the equation of the perpendicular bisector of the segment with endpoints (-2, -1) and (8, 5).

$$M = \frac{-1-5}{-2-8} = \frac{-6}{-10} = \frac{3}{5}$$

$$Lm = \frac{-5}{3}$$

Part E: Graph the lines on the coordinate graph at the right.

1.
$$y = \frac{2}{5}x + 2$$

2.
$$x + 3y = 6$$

 $3y = -x + 6$
 $y = -\frac{1}{3}x + 2$

Part F: Solve the systems of equations.

1.
$$x = \sqrt{y + 10}$$

 $2y = x - 6$
 $2y = y + 10 - 6$
 $y = 4$
 $x = 14$ (14.4)

2.
$$(2x + 3y = -1)^{-3} \rightarrow -6x - 9y = 3$$

 $(3x + 5y = -2)2 \rightarrow 6x + 10y = -4$
 $2x + 3(-1) = -1$
 $2x - 3 = -1$
 $2x = 2$ $((1 - 1))$