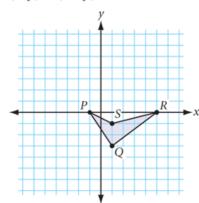
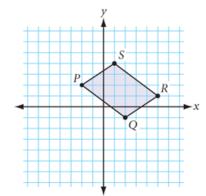

For exercises 1-2, translate each quadrilateral by the given vector.



For exercises 3-4, reflect each quadrilateral by the given ordered rule. Identify the line of reflection.

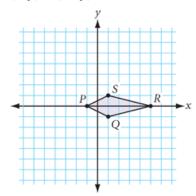
3.
$$(x, y) \to (y, x)$$

4.
$$(x, y) \rightarrow (x, -y)$$
 h

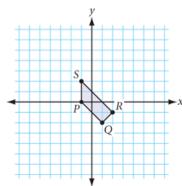


For exercises 5-6, transform each quadrilateral by the given ordered pair rule. Identify either the line of reflection or the center of rotation.

5.
$$(x, y) \to (y, -x)$$
 h

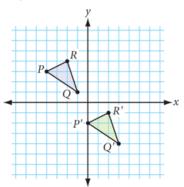


6.
$$(x, y) \to (-y, -x)$$

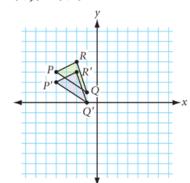


For exercises 7-8, transform each quadrilateral by the given ordered pair rule. Explain how these transformations are different than the previous transformations.

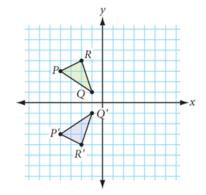
7. $(x, y) \to (x, 3y)$ h

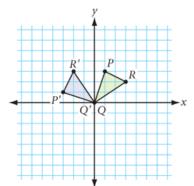


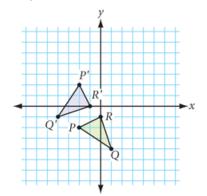
8. $(x, y) \rightarrow (3x, 3y)$

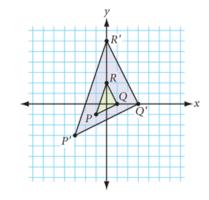


For exercises 9-14, describe the type of transformation. Then find the ordered pair that transformed the triangle PQR to the triangle P'Q'R'.


9. $(x, y) \to (?, ?)$ h


10. $(x, y) \rightarrow (?, ?)$


11. $(x, y) \rightarrow (?, ?)$


12. $(x, y) \to (?, ?)$ **h**

13. $(x, y) \rightarrow (?, ?)$

14. $(x, y) \to (?, ?)$ **h**

For exercises 15-22, match the composition of transformations with the ordered pair rule.

15.
$$(x, y) \to (x + h, y + k)$$

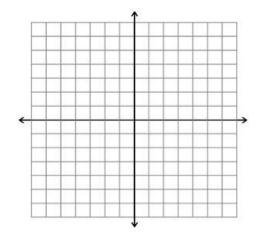
16.
$$(x, y) \to (x, -y)$$

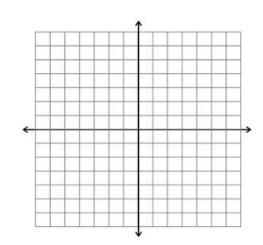
17.
$$(x, y) \to (y, -x)$$

18.
$$(x, y) \to (-x, y)$$

19.
$$(x, y) \to (-x, -y)$$

20.
$$(x, y) \rightarrow (y, x)$$


21.
$$(x, y) \rightarrow (-y, x)$$


22.
$$(x, y) \rightarrow (-y, -x)$$

- a. 90° clockwise rotation about the origin.
- **b.** reflection across the *x*-axis.
- c. 90° counterclockwise rotation about the origin.
- **d.** reflection across the *y*-axis.
- **e.** translation by the vector $\langle h, k \rangle$.
- **f.** reflection across the line y = x.
- **g.** reflection across the line y = -x.
- h. 180° rotation about the origin.

23. Given $\triangle ABC$ with vertices: A(-6, -2), B(1, 1), C(-5, 2)

- **a.** Translate $\triangle ABC$ by the translation rule $(x, y) \rightarrow (x, y + 4)$ to create $\triangle A'B'C'$.
- **b.** What are the coordinates of the vertices of $\Delta A'B'C'$?
- **c.** Translate $\Delta A'B'C'$ by the translation rule $(x, y) \rightarrow (x + 6, y 7)$ to create $\Delta A''B''C''$.
- **d.** What are the coordinates of the vertices of $\Delta A''B''C''$?
- **e.** What is the single transformation rule that takes \triangle ABC onto \triangle A"B"C"?
- **f.** What is the single transformation rule that takes $\Delta A''B''C''$ back onto ΔABC ?

