H.Geometry - Chapter 5- Definition Sheet

Section 5.1

Definitions for ANY polygon Interior Angle Exterior Angle	Angles formed by two sides of a polygon in the polygon's Angle forming a \qquad with an interior angle
Notation for Any Polygons \qquad	- \# of sides of a polygon - \# of vertices of a polygon - \# of angles (interior) of a polygon
$\underline{\square}$	- Sum of the measures of the \qquad angles in a polygon (n-gon)
$\underline{\square}$	- Sum of the measures of the exterior angles in an n -gon
Definition of Regular Polygons	A polygon that is both___ and ___
Notation for Regular Polygons \qquad \qquad	- Measure of one \qquad angle of a Regular Polygon - Measure of one \qquad angle of a Regular Polygon

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

Section 5.2

Recall:
Exterior Angle of a Polygon
Forms a \qquad with one of the interior angles of the polygon

Investigation:
Finding the sum of the exterior angles (one at each vertex) of a polygon.

Summing all interior and exterior angle pairs:

Solving to find sum of exterior angles $\left(\boldsymbol{S}_{\boldsymbol{e}}\right)$

H.Geometry - Chapter 5- Definition Sheet

Exterior Angle Sum Theorem	The sum of the measure of the exterior angles (one at each vertex) is:
Regular Polygon Exterior Angle Theorem	The measure of one exterior angle of a \qquad (or \qquad polygon is: \qquad Example: Find the measure of one exterior angle of a: Regular Octagon Regular 20-gon Example: One exterior angle of a regular polygon has a measure of 7.2°. How many sides does the polygon have?

Hierarchy of Quadrilaterals

(TREE DIAGRM)

H.Geometry - Chapter 5- Definition Sheet

Section 5.3 (Day 1)

Recall: Definition of a Trapezoid	A quadrilateral with \qquad one pair of parallel sides \qquad - 2 parallel sides \qquad - 2 non-parallel sides \qquad - angles at both ends of the base - angles at both ends of a leg

INVESTIGATION PROOF:

GIVEN: Trapezoid TRAP w/bases TR and AP

PROVE: <T and <P are suppl.

H.Geometry - Chapter 5- Definition Sheet

Recall:	
Definition of Isosceles Trapezoid	A trapezoid with _CONSTRUCT: Isosceles Trapezoid (what can you conclude?)

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

Section 5.3 (Day 2)
Trapezoid Characteristics

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

Investigation:

Draw a line and label the endpoints " A " and " C "
Construct a kite ABCD with AC as a diagonal
Construct the perpendicular bisector of AC.

What do you notice about your perpendicular bisector?

Kite Diagonals Theorem	The diagonals of a kite are___ of the other diagonal.
Kite Diagonal Bisector Theorem	The diagonals connecting the vertex angles of a kite is the

H.Geometry - Chapter 5- Definition Sheet

Distance Formula/Coordinate Proofs

H.Geometry - Chapter 5- Definition Sheet

ExAMPCE
GIUEN: $J(-5,0)$
$K(5,8)$
$L(4,-1)$
PROUE: $\triangle 5 K L$ is 1SOSCELES

conclusions	Jusmaications
$0 . J(-5,0) K(5,8) L(4,-1)$	0. Glven

H.Geometry - Chapter 5- Definition Sheet

ExAMPLE
GIUEN: $\quad A(2,1)$

$$
\begin{aligned}
& B(4,4) \\
& C(5,2) \\
& D(3,-1)
\end{aligned}
$$

PROUE: $A B C D$ IS A parallelogeny

Concusions
JUSTIFICATIONS
0.

$$
\begin{aligned}
A(2,1) & B(4,4 \\
D & (3,-1)
\end{aligned}
$$

H.Geometry - Chapter 5- Definition Sheet

Section 5.4	
Definition of a Midsegment	-The segment connecting the of the two sides of the triangle.

- Construct the midpoints of two sides And connect them
- Measure the length of the midsegment and compare it to the length of the base

The Midsegment of a triangle is:
A.) \qquad to the third side
B.) \qquad of the third side

H.Geometry - Chapter 5- Definition Sheet

Three Midsegment Theorem	The three midsegments of a triangle divide the triangle into \qquad triangles.
Midsegment of a trapezoid	The segment connecting the midpoints of the two \qquad of the trapezoid
Trapezoid Midsegment Theorem	The midsegment of a trapezoid is: A.) \qquad to the bases B.) Has length equal to the \qquad of the lengths of the bases.

H.Geometry - Chapter 5- Definition Sheet

Section 5.5 - Investigation

Quadrilateral Hierarchy	-Shows relationships among the various types of quadrilaterals \qquad works up the hierarchy \qquad work down the hierarchy Example: A rectangle is also : Properties of trapezoids also apply to:
Properties of Parallelograms: Parallelogram Angles Theorem	The consecutive angle of a parallelogram are \qquad Made possible by: \qquad
Parallelogram Theorem	Both Pairs of opposite sides of a parallelogram are
Parallelogram Theorem	Both Pairs of opposite angles of a parallelogram are
Parallelogram Theorem	The diagonals of a parallelogram _____ each other.

H.Geometry - Chapter 5- Definition Sheet

Vector	- A quantity with both \qquad and \qquad - Represented by arrows Direction: \qquad - Magnitude: \qquad - Used in physics to represent forces, velocity, or acceleration
Resultant Vector	- A single vector representing the effect of two forces put together - Finding vector sum - Draw a parallelogram using the vectors as sides - Resultant vector is the \qquad of this parallelogram drawn from the vectors' tails. Example: 2 forces acting on an object $V_{p}=$ Force due to pulling $V_{g}=$ Force due to gravity $V_{r}=$ Resultant Vector

H.Geometry - Chapter 5- Definition Sheet

Section 5.6

Properties of Rhombuses:

Definition of a rhombus

Rhombus Diagonal Theorem

Rhombus Angle Bisector Theorem.

A parallelogram with \qquad sides.

Belongs to : \qquad , \qquad ,
(1) Because a rhombus is a :
\qquad : Diagonals are perpendicular (\qquad _)
\qquad : Diagonals bisect each other. (\qquad

The diagonals of a rhombus are \qquad of each other.

(2) Because a rhombus is a :
\qquad : Diagonal connecting the vertex angles is the angle bisector of the vertex
angles (\qquad) and a rhombus has
\qquad -.

The diagonals of a rhombus \qquad the angles of the rhombus

Question:
What is true about the 4 triangles formed by the 2 diagonals of the rhombus?

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

Section 5.7

Approaches to solving a difficult proof	$\bullet \quad$ Reason FORWARD from givens	
	• Reason BACKWARD from given proof	

EXAMPLE:
GlEN: DART $A D B C$ with $\overline{A C} \cong \overline{B C}, \overline{A D} \cong B \bar{D}$. PROVE: $\overline{C D}$ BISECTS $\angle A C C$

CONCLUSIONS	
0. DARA $A D B C \quad W /$	
$A C$	$\approx \overline{B C}, \frac{A D}{A D B D}$
$\overline{C D}$	$\cong \overline{C D}$

2. $\triangle A D C \triangle \triangle B O$
3. $\angle A C D=\angle B C D$
4. CD BLEAT $\angle A C B$

H.Geometry - Chapter 5- Definition Sheet

Prove:

1) $\triangle A B C \cong \triangle C D A$
2) $\overline{A B} \cong \overline{C D}$
$\overline{B C} \cong D \bar{A}$
3) $\angle A B C \cong \angle C D A$
4) $\triangle D A B \cong \triangle B C D$
5) $\angle D A B \cong \angle B C D$
6) $\triangle A E D \cong \triangle C E B$
7) $\overline{A E} \cong C \bar{E}$

$$
\overline{D E} \cong \overline{B E}
$$

H.Geometry - Chapter 5- Definition Sheet

H.Geometry - Chapter 5- Definition Sheet

