Section 5.1			
Definitions for ANY polygon			
Interior Angle	Angles formed by two sides of a polygon in the polygon's 1^2		
Exterior Angle	Angle forming a with an interior angle		
Notation for Any Polygons			
	 # of sides of a polygon # of vertices of a polygon # of angles (interior) of a polygon 		
	 Sum of the measures of the angles in a polygon (n-gon) 		
	 Sum of the measures of the exterior angles in an n-gon 		
Definition of Regular Polygons	A polygon that is both and		
Notation for Regular Polygons			
	Measure of one angle of a Regular Polygon		
	Measure of one angle of a Regular Polygon		

	# of sides	# of diagonals	# of triangles	Sum of the
Investigation:	(n)	(non-overlapping)	(non-overlapping)	interior angles
Finding the sum of the interior				(S _i)
angles of an n-gon	3			
Stops	\wedge			
(1) Draw a convex polygon				
(i) Draw a convex polygon (each group gets a type				
of polygon with different	Λ			
n-values)	4			
(2) Draw all the diagonals				
from one vertex (how				
many did you draw?)				
(3) The diagonals cut the	5			
polygon into triangles.				
How many triangles (non-				
formed?				
(4) Each triangle has a sum	6			
of the measures of the	6			
interior angles of				
degrees. Use this				
information to find the				
sum of the angles in your	7			
(5) Add your results to the	-			
table.				
	0			
	ŏ			
	9			
	n			

Polygon Sum Theorem	The sum of the measure of the interior angles of an n-gon is:		
	Example: Find the sum of the interior angles of a:		
	Decagon Dodecagon 40-gon		
	<u>Example:</u> The sum of the inter the polygon have?	ior angles of a polygon is	s 2,700°. How many sides does
Regular Polygon Interior Angle Theorem	The measure of inte	rior angle of a regular po	blygon is:
	O r		
	Example: Find the measure of one interior angles of a:		
	Regular Octagon Regular 18-gon		
	Example: The measure of one sides does the regula	interior angle of a regula r polygon have?	ar polygon is 165.6°. How many

Section 5.2		
Recall: Exterior Angle of a Polygon	Forms a	with one of the interior angles of the polygon
Investigation: Finding the sum of the exterior angles (one at each vertex) of a polygon.		
Finding the sum of the exterior angles (one at each vertex) of a polygon. $ \begin{array}{c} F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{3} \\ F_{5} \\ F_{$		
	Summing all interior and	d exterior angle pairs:

Solving to find sum of exterior angles (S_{e})

Exterior Angle Sum Theorem	The sum of the measure of the exterior angles (one at each vertex) is:
Regular Polygon Exterior Angle Theorem	The measure of one exterior angle of a polygon is:	(or)
	Example: Find the measure of one exterior angl	le of a:
	Regular Octagon	Regular 20-gon
	Example: One exterior angle of a regular polygon sides does the polygon have?	on has a measure of 7.2°. How many

(TREE DIAGRAM)

	Section	5.3 (Day 1)	
Recall: Definition of a Trapezoid	A quadrilateral with		_ one pair of parallel sides
	- 2 paraller sid	lel sides	
		angles at both en	ids of the base
			angles at both ends of a leg
	INVESTIGATIO	N PROOF:	
GIVEN: Trapezoid TR and	TRAP w/bases AP	T	R
PROVE: <t <<="" and="" th=""><th>P are suppl.</th><th></th><th></th></t>	P are suppl.		
CONCLU	24012	2UE	TIFICA MONS
O. MOLDEZON BASES	TRAP WITH	O. GIVE	
		I	

Recall: Definition of Isosceles Trapezoid	A trapezoid with
	CONSTRUCT: Isosceles Trapezoid (what can you conclude?)
	Both sets of in an isosceles trapezoid are
	·

Section 5.3 (Day 2)		
REVIEW:		
Trapezoid Characteristics		
Isosceles Trapezoid Characteristics		
Definition of Kite	A quadrilateral with exactly of distinct congruent	
	sides.	
Parts of a Kite	The angles formed by the congruent sides	
	The angles formed by the non-congruent sides.	

	JUSTIFICATIONS
O. KITE ABCD WITH VERTEY L'S	O. GIVEN)
rs to ro	

Kite Angle Bisector Theorem	The diagonal Connecting the vertex angles of a kite is the of the vertex angles.		
Kite Angles Theorem	The non-vertex of a kite are		

Investigation:

Draw a line and label the endpoints "A" and "C" Construct a kite ABCD with AC as a diagonal Construct the perpendicular bisector of AC.

What do you notice about your perpendicular bisector?

Kite Diagonals Theorem	The diagonals of a kite are
Kite Diagonal Bisector Theorem	The diagonals connecting the vertex angles of a kite is the
	of the other diagonal.

	Distance Formula/Coordinate Proofs		
Distance Formula	$A (x_{1}, y_{2}) (x_{2}-y_{1}) (x_{2}-y_{1$		
	Where:		
	d =		
	$(x_1, y_1) =$		
	(<i>x</i> ₂ , <i>y</i> ₂) =		
	Examples: Find the distances between:		
	1.) $A(2,3)$ and $B(8,9)$	AB =	
	2.) $C(4,6)$ and $D(0,-4)$	CD =	
	3.) $E(-7,5)$ and $F(-3,8)$	EF =	
	4.) $G(-10,11)$ and $H(-31,-25)$	GH =	

EXAMPLE (GIVEN: A(2,1) TB(4,4) C(5,2) D(3,-1) PROVE: ABCD IS A PARALLELOGENM		
CONCLUSIONS O. A(2,1) B(4,4) D(3,-1)	ς (5, 2)	JUSTIFICATIONS O, GIUEN

	Section 5.4	
Definition of a Midsegment	-The segment connecting the of the two sides of the triangle.	

PROVING THE TRIANGLE MIDSEGMENT THAT.

- Construct the midpoints of two sides And connect them
- Measure the length of the midsegment and compare it to the length of the base

Triangle Midsegment Theorem	The Midsegment of a triangle is:	
	A.) to the third sic	le
	В.)	of the third side

Three Midsegment Theorem	The three midsegments of a triangle divide the triangle into triangles.
Midsegment of a trapezoid	The segment connecting the midpoints of the two of the trapezoid M T R HIDSEGHENT MN
Trapezoid Midsegment Theorem	The midsegment of a trapezoid is: A.) to the bases B.) Has length equal to the of the lengths of the bases.

	Section 5.5 - Investigation
Quadrilateral Hierarchy	-Shows relationships among the various types of quadrilateralsworks up the hierarchywork down the hierarchy Example: A rectangle is also :
	Properties of trapezoids also apply to:
<u>Properties of Parallelograms:</u>	
Parallelogram Angles Theorem	The consecutive angle of a parallelogram are
Parallelogram Theorem	Both Pairs of opposite sides of a parallelogram are
Parallelogram Theorem	Both Pairs of opposite angles of a parallelogram are
Parallelogram Theorem	The diagonals of a parallelogram each other.

Vector	 A quantity with both and Represented by arrows Direction: Magnitude: Used in physics to represent forces, velocity, or acceleration
Resultant Vector	 A single vector representing the effect of two forces put together Finding vector sum Draw a parallelogram using the vectors as sides Resultant vector is the of this parallelogram drawn from the vectors' tails.
	Example: 2 forces acting on an object $V_p = Force \ due \ to \ gravity$ V_g $V_r = Resultant \ Vector$

	Section 5.6		
Properties of Rhombuses:			
Definition of a rhombus	A parallelogram with	sides.	
	Belongs to :,,	,	
	(1) Because a rhombus is a :		
	: Diagonals are per	pendicular ()
	: ۱	Diagonals bisect each other. ()
Rhombus Diagonal Theorem	The diagonals of a rhombus are _		of each other.
	(2) Because a rhombus is a :		
	: Diagonal connecti	ing the vertex angles is the angle bi	sector of the vertex
	angles () and a rhombus has	;
Rhombus Angle Bisector Theorem.	The diagonals of a rhombus	the angles of t	the rhombus
			\frown
		\langle	
			\checkmark
	What is true about the 4 triangle	Question: s formed by the 2 diagonals of the	rhombus?

<u>Properties of Rectangles:</u>	R E
Definition of rectangle	A parallelogram with (making each)
	Belongs to:,,,,
	(1) Because a rectangle is a :
	: Diagonals are perpendicular bisectors of each other ()
	: Diagonals are congruent. ()
Square Diagonal Theorem	The diagonals of a rectangle areand

Properties of Squares:	
Definition of Square	A quadrilateral that is equilateral and equiangular
	Belongs to:
	(1) Because a square is a :
	: Diagonals are congruent
	()
	: Diagonals are perpendicular ()
	. Discourses are bissetters of each other
Square Diagonals Theorem	The diagonals of a square are,,
	and

	Section 5	5.7	
Approaches to solving a difficult proof	 Reason FORWA C Reason BACKWA 	RD from givens Dr ARD from given proof	
EXAMPLE: GIVEN: DA PROVE: O. DART ADBC ACE BC 1. CDE CD 2. DADCE 1	RT ADBC WITH CD BISECIS (SIONS W/ AD SBD	AC = BC, AD LACB	DE BD
3. LACD 5 L	BCD LACB	· .	

Quadrilateral Properties	Trapezoid	Parallelogram	Kite	osceles Trapezoic	Rhombus	Rectangle	Square
≅ s'∖ stisoqq0	text is a	1.0000		6			3
≤s'∆ x9n9V							
ar vertex ∠'s ≌							
≅ s,⊃ əseg							
Consecutive ∠'s supplementary							
aelugneiup3							
letetal				•1			
2'∆ xərrect vertex ∠'s							
s'∆ xatiev-non tostid slanogaiO							
≡ zlenogeiO							
Diagonals bisect each other							
⊥ slenogeiO		-					
One pair of // sides		-					
Two pairs of // sides							
≡ s8əγ							
≂ səseg							
≅ səbis ətizoqqO							
⊆ sabis evtives consecutivos							