H.Geometry - Chapter 4 - Definition Sheet

Section 4.1

Triangle Sum Theorem	The sum of the measure of the angles in a triangle is
PROOF:	IUEN: $\begin{aligned} & m \angle 1=m \angle 4 \\ & m \angle 2=m \angle 5 \end{aligned}$ PROE: $\quad m \angle 3=m \angle 6$

\qquad to two angles in another triangle, then the \qquad in each triangle are equal
measure to each other.

H.Geometry - Chapter 4 - Definition Sheet

Section 4.2

Measure out the base angles.... What do you notice?!?!

H.Geometry - Chapter 4 - Definition Sheet

H.Geometry - Chapter 4 - Definition Sheet

Application to Equilateral Triangles	If $\triangle \mathrm{ABC}$ is equilateral, is it equiangular?
	If $\triangle \mathrm{ABC}$ is equiangular, is it equilateral?
Equilateral Triangle Theorem	(1) An equilateral triangle is equiangular (2) An equiangular triangle is equilateral

H.Geometry - Chapter 4 - Definition Sheet

Section 4.3

Triangle Inequality Conjecture
The sum of the lengths of any two sides of a triangle is \qquad than the length of the third side \qquad

\qquad

1. CAN A TRIANGE BE MHDE WITH THE GIUEU SIDES?
a) $3,5,7$
b) $8,13,25$ \qquad f) $11,21,31$ \qquad
c) $10,10,10$ -
g)

8, 12, 22
d) $15,10,5$ \qquad h) $1,2,3$ \qquad
2. give all the possible values for x

H.Geometry - Chapter 4 - Definition Sheet

H.Geometry - Chapter 4 - Definition Sheet

H.Geometry - Chapter 4 - Definition Sheet

Prove the Triangle Exterior Angle Theorem

PROOF:
GIVEN:
$\triangle A B C \quad \omega 17 H$
Exteence $\angle 4$

PROVE:

$$
M L 1+n O L=n \angle 4
$$

H.Geometry - Chapter 4 - Definition Sheet

Section 4.4

Congruent Triangles
Determining if triangles are 1 Pair of congruent corresponding parts
2 Pairs of congruent corresponding parts
3 Pairs of congruent
corresponding parts

H.Geometry - Chapter 4 - Definition Sheet

A \qquad c

B \qquad c

A

INVESTIGATION
2
(P. 223)

H.Geometry - Chapter 4 - Definition Sheet

INVESTIGATION 3 SSA CASE (P.223)

H.Geometry - Chapter 4 - Definition Sheet

	- The two sides and their \qquad angle in one triangle are congruent
Congruence Conjecture 1 \qquad)	to two sides and their \qquad angle in another triangle, then the triangles are congruent.
	- Two sides and a non-included angle is not sufficient in determining if triangles are congruent. HOWEVER.....Advance Algebra NOTE:
Congruence Conjecture \qquad	If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, then the triangles are congruent.

H.Geometry - Chapter 4 - Definition Sheet

Section 4.5

H.Geometry - Chapter 4 - Definition Sheet

Investigation 1
ASA
case
(P. 227)

$$
M \longmapsto T
$$

H.Geometry - Chapter 4 - Definition Sheet

To construct angle L... form a straight line with J and K.
H.Geometry - Chapter 4 - Definition Sheet

INVESTIGATION 3
AA case
(p. 228)

Congruence Conjecture | If two angles and their included side in one triangle are congruent to two angles and its |
| :--- |
| included side in another triangle, then the triangles are congruent. |

H.Geometry - Chapter 4 - Definition Sheet

Section 4.6

Recall: Triangle congruence shortcuts	\qquad Allows us to determine if triangles are congruent without having info on all 6 pairs of sides and angles.
Theorem	"Corresponding Parts of Congruent Triangles are Congruent" When you have two congruent triangles, use this to determing which parts of the triangles are congruent. Parts of a triangle: \qquad \qquad \qquad \qquad \qquad \qquad

Hxamples:

In examples $1-5$, use the figure at right to explain why each congruence is true. $W X Y Z$ is a parallelogram.

1. $\angle W X Z \cong \angle Y Z X$
2. $\angle W Z X \cong \angle Y X Z$
3. $\overline{X Z} \cong \overline{Z X}$
4. $\triangle W Z X \cong \triangle Y X Z$

5. $\angle W \cong \angle Y$

H.Geometry - Chapter 4 - Definition Sheet

Use the given information to answer the question.
6. Given: $\angle U$ and $\angle D$ are right angles

$$
\overline{Q U} \cong \overline{Q D}
$$

$$
\text { Is } \overline{A U} \cong \overline{A D} \text { ? }
$$

7. Given: M is the midpoint of $W X$ M is the midpoint of $Y Z$

$$
\text { Is } \overline{Y W} \cong \overline{Z X} \text { ? }
$$

8. Given: $\triangle W Z X$ is isosceles
$\overline{C D}$ is the bisector of the vertex angle

$$
\text { Is } \overline{A D} \cong \overline{B D} \text { ? }
$$

H.Geometry - Chapter 4 - Definition Sheet

EXERCISES: IF THE GIVEN TRIANGLES ARE CONGRUENT,
a) WRITE THE ABBREVIATION FOR THE NAME OF THE CONGRVE CONJECTURE THAT MAKES THE TRIANGLES CONGRUENT
b) WRITE A CONGRUENLE STATEMENT. FOR THE TRIANGLES.

IF THE TRIANGLES ARE NOT CONGRUENT, WRITE "NONE"

2.

3. G

4.

5.

7.

8.

9.

10.

11.

12.

H.Geometry - Chapter 4 - Definition Sheet

H.Geometry - Chapter 4 - Definition Sheet

FLOD-CHART PROOF:

$$
\begin{array}{rlrl}
\text { EXAMPLE } \quad \text { I } & \text { GIUEA: } & \angle 3 & \cong 4 \\
& & B M & \cong \overline{A M} \\
\text { PRONE: } & \overline{A D} \cong \overline{B C}
\end{array}
$$

1
1

3

Example 2:

Given: $A B C D$ is a parallelogram
Prove: $<B \cong<D$

H.Geometry - Chapter 4 - Definition Sheet

EXAMPLE 3.

GIVEN: $\overline{G E} \cong \overline{G M}$

$$
\overline{E O} \cong \overline{M O}
$$

PROVE: $\quad \angle E \cong \angle M$

1

H.Geometry - Chapter 4 - Definition Sheet

Vertical Angle Bisector Theorem

H.Geometry - Chapter 4 - Definition Sheet

How do the medians of an isosceles triangle relate to each other?	
Isosceles Triangle Medians	
Theorem	
How do the altitudes of an	
isosceles triangle relate to each	
other?	
Theorem	

H.Geometry - Chapter 4 - Definition Sheet

