	Se	ction 4.1	
Triangle Sum Theorem	The sum of the meas	sure of the angles in a tri	angle is
	NUEN: MLI MLZ ROVE: MLI	= m25	B Z B C H D
Conclu	sions	Justification	F 5 E
Third Angle Theorem			to two angles in in each triangle are equal
	in measure to each oth		

Application to Equilateral Triangles	If ΔABC is equilateral, is it equiangular?	
	If ΔABC is equiangular, is it equilateral?	
Equilateral Triangle Theorem	(1) An equilateral triangle is equiangular(2) An equiangular triangle is equilateral	

	Section 4.3
Triangle Inequality Conjecture	The sum of the lengths of any two sides of a triangle is
6) 8 6) 8 6) 1	TRIANGLE BE MADE WITH THE GIVEN SIDES? 5, 7 (1) 16, 35, 13 11, 21, 31 0, 10, 10 (1) $8, 12, 225, 10, 5$ (1) $1, 2, 3$
	ALL THE POSSIBLE ES FOR X 11

Prove the Triangle Exterior A	ngle Theorem
PROOF: GIVEN: DABC WITH EXTERIOR 24 1	B 2 3 4
PROVE: MLI+MLZ=ML4	C
CONCLUSIONS	JUSHFICATIONS
O. DABC WITH EXTERIOR 24	O. GIUEN

	Section 4.4
Congruent Triangles	 Would have to have 6 pairs of corresponding parts congruent 3 pairs of sides and 3 pairs of angles
Determining if triangles are congruent with:	
1 Pair of congruent corresponding parts	One side? One Angle?
2 Pairs of congruent corresponding parts	- Side – Side (SS) - Angle-Angle (AA) - Side-Angle (SA)
3 Pairs of congruent corresponding parts	- SIX POSSIBILITIES: (SOME WORK, SOME DOW'T) $ \begin{array}{c} \end{array} $

To construct angle L... form a straight line with J and K.

	Section 4.6
<u>Recall:</u> Triangle congruence shortcuts	
	 Allows us to determine if triangles are congruent without having info on all 6 pairs of sides and angles.
Theorem	 "Corresponding Parts of Congruent Triangles are Congruent" When you have two congruent triangles, use this to determing which parts of the triangles are congruent. Parts of a triangle:

Examples:

In examples 1-5, use the figure at right to explain why each congruence is true. *WXYZ* is a parallelogram.

1.
$$\angle WXZ \cong \angle YZX$$

2. $\angle WZX \cong \angle YXZ$
3. $\overline{XZ} \cong \overline{ZX}$
4. $\Delta WZX \cong \Delta YXZ$
5. $\angle W \cong \angle Y$

EXERCISES: IF THE GIVEN TRIANGLES ARE CONGRUENT, (A) WRITE THE ABBREVIATION FOR THE NAME OF THE CONGRUE ; CONJECTURE THAT MAKES THE TRIANGLES CONGRVENT b) WRITE A CONGRUENCE STATEMENT FOR THE TRIANGLES. IF THE TRIANGLES ARE NOT CONGRUENT, WRITE "NONE" A R 2. γ 3. G] С D F х Z W Н 1 L 4. к 5. Q 6. B С L R М s A D 7. U 8. 9. B Q S Т A D 10. Ġ 11. Q 12.Ζ R S Х R s

	Section	4.7
Proofs using congruent triangles	Formats:	,,,
EXAMPLE 1.		C (3 B
GIVEN: 23=	ž∠ч	MZ
BH =	= AM	
	p	+ <u>(4)</u> D
PROVE: AD	≧ BC	
		1
CONCLUS	IONS	JUSTIFICATIONS
0. 63=6	4	0.
BA = A	-A-2	
		1. VERTICHE L TTIM
	- .	
2 DAMDE	() BMC	2.
3.		З.
	· :	· · · · · · · · · · · · · · · · · · ·
Flowchart	system or problem - Can be used to plan - Boxes – used to rep	n/visualize logical thinking
		→

	Section 4.8
Vertical Angle Bisector Theorem	In an Isosceles Triangle, the angle bisector of the vertex angle is also the
	, the and the

