	Section 3.1
Measurement Tools	
Construction Tools	
Sketch	
Draw	
Construct	
Constructing the Duplicate of a Segment	 1.) Start with a given segment. 3.) A

Section 3.2		
Segment Bisector • Definition		
Perpendicular Bisector • Definition	P R Q m	
Perpendicular Bisector Conjecture	 If a point is on the, then it is from the endpoints of the segment. Example: 	
Converse of the Perpendicular Bisector Conjecture	 If a point is equidistant from the endpoints of a segment, then it lies on the of the segment. 	

Perpendicular Bisector	
Construction	
	Note: Knowing how to construct the perpendicular bisector of a segment means you can
	construct the of a segment.

of a triangle	 The segment connecting a vertex of a triangle to the opposite side. 	of the
Construct the median AM		
1.)	А	
2.)	B	C
	The segment connecting the	_ of two sides of a triangle
of a triangle	How to construct it:	
	1.)	
	2.)	

Section 3.3		
Shortest Distance Conjecture	The shortest distance from a point to a line is measured along the from the point to the line.	
Definition of	The length of the segment from the point to the line.	
Altitude of a Triangle VS. Height of a Triangle		
Constructing a Perpendicular through a Point (P) Not on the Line Process:	● P	

	Section 3.4	
Angle Bisector Conjecture	If a point is on the bisector of an angle, then the point is the sides of the angle. (Note: the converse is also true!)	from
Construct an Angle Bisector		
Process:		

The measure of each angle of an equilateral triangle is
(a) Construct a 45° angle at P
•
(b) Construct a 60° angle at Q
•

	UYAS 3: slopes/p	arallel and perpe	endicular lines	
Parallel Slope Conjecture	In a coordinate slopes are	plane, two distinct li 	nes are	if and only if their
Perpendicular Slope Conjecture	 In a coordinate p their slopes are 	olane, two non-vertic	al lines are	if and only if
Examples	For the given lines, find the slope, and give the slopes of the parallel and perpendicular lines.			
	Line	Slope	Slope of Parallel	Slope of Perpendicular
	Line JK J(5,7) K(-2,10)			
	Line LM L(-2,-6) M(2,2)			

	Section 3.5
Parallel Lines	Coplanar lines that do not intersect (Note: This means that the lines are always the apart.)
Parallel Postulate (Euclid's 5 th postulate)	Through a point not on a line, there is line through the point parallel to the line.
Constructing parallel lines using the "Equidistant Method"	Given: Line I and Point P NOT on I Construct: A line through P parallel to I
Process:	
	P •

Two Perpendiculars Conjecture	In a plane, if two lines are perpendicular to the same line, then the lines are

Section 3.6		
Determining a Triangle	When all triangles constructed with given measures (some combination of side lengths and angles measures) are congruent.	
Example	Use the following measurements to construct ΔDOT	
	0 T	
	DO	

Section 3.8		
Definition of	Lines (or segments or rays) that in a single point.	
lines	(Two lines are ALWAYS concurrent, but 3 lines will not always be!)	
Angle Bisector Concurrency Conjecture	The three angle bisectors of a triangle are	
of a triangle	The point of concurrency of the of a triangle	

Concurrency Conjecture	The three of a triangle are concurrent.		
of a triangle	The point of concurrency of the of a triangle.		
Concurrency Conjecture	The three of a triang	le are concurrent.	
of a triangle	The point of concurrency of the	of a triangle.	
Conjecture	The of a triangle is (recall: angle bisector conjecture in lesson 3.4) COROLLARY: The <i>incenter</i> is the of the triangles inscribed circle (touches each side in exactly one point.)	from the triangles 3 sides.	
Conjecture	The of a triangle is (recall: perpendicular bisector conjecture in lesson 3.2 COROLLARY: The <i>circumcenter</i> is the of the triangles circumscribed circle (passes through each vertex of the triangle.)	from the triangles 3 vertices	

	Section 3.9	
Name	Concurrency of:	Special Properties:
Incenter		
Circumcenter		
Orthocenter		
	Medians	

Median Concurrencry Conjecture	The three
of a triangle	The point of concurrency of the of a triangle.
Conjecture	The of a triangle divides each into two parts, so that the distance from the centroid to the vertex is the distance to the midpoint. IN OTHER WORDS: (1) The distance from the centroid to the vertex is of the medians length. (2) The distance from the centroid to the midpoint is of the medians length.
	Section 3.8 (Exploration)
	 The "balancing point" of a figure In physics, it's the imaginary point where an object's total weight is concentrated. Questions: Where is the center of gravity of a triangle? Where is a human's center of gravity?
Center of Gravity Conjecture	The of a triangle is the center of gravity of the triangular region
	A special line that contains 3 out of the 4 points of concurrency.
conjecture	The, the, and the are the three points of concurrency that always lie on the Euler Line.

	Segment on Euler Line created by the three points of concurrency.		
conjecture	The divides the Euler segment into two parts, so that the smaller part is the longer part.		
	IN OTHER WORDS: The longer part is twice as big as the smaller part.		

Points of Concurrency in Triangles

Point Name	Concurrency of:	Special Properties	On Euler Line?
Incenter			
Circumcenter			
Orthocenter			
Centroid			