H.Geometry - Chapter 3 - Definition Sheet

Section 3.1

H.Geometry - Chapter 3 - Definition Sheet

| Constructing the Duplicate | |
| :---: | :---: | :---: |
| of an angle | 1.) Start with a given angle. |
| 2.) | 3.) |

H.Geometry - Chapter 3 - Definition Sheet

	Section 3.2
Segment Bisector - Definition	
Perpendicular Bisector - Definition	
Perpendicular Bisector Conjecture	- If a point is on the \qquad , then it is \qquad from the endpoints of the segment. Example:
Converse of the Perpendicular Bisector Conjecture	- If a point is equidistant from the endpoints of a segment, then it lies on the \qquad of the segment.

H.Geometry - Chapter 3 - Definition Sheet

Perpendicular Bisector		
Construction		
	Note: Knowing how to construct the perpendicular bisector of a segment means you can	

of a triangle	- The segment connecting a vertex of a triangle to the \qquad of the opposite side.
Construct the median $\overline{\text { AM }}$	
1.)	A
2.)	-
	- The segment connecting the _____ of two sides of a triangle
of a triangle	How to construct it:
	1.)
	2.)

H.Geometry - Chapter 3 - Definition Sheet

Section 3.3

H.Geometry - Chapter 3 - Definition Sheet

| Constructing a | |
| :---: | :---: | :---: |
| Perpendicular through a | |
| Point (P) ON A LINE. | |
| Process: | |
| Constructing an Altitude of | |
| a Triangle. | |

H.Geometry - Chapter 3 - Definition Sheet

Angle Bisector Conjecture | If a point is on the bisector of an angle, then the point is | |
| :--- | :--- |
| the sides of the angle. (Note: the converse is also true!) | |
| Construct an Angle Bisector | |

H.Geometry - Chapter 3 - Definition Sheet

Equilateral Triangle Angle Conjecture	The measure of each angle of an equilateral triangle is
Investigation	(a) Construct a 45° angle at P

H.Geometry - Chapter 3 - Definition Sheet

UYAS 3: slopes/parallel and perpendicular lines

H.Geometry - Chapter 3 - Definition Sheet

Section 3.5

Parallel Lines	Coplanar lines that do not intersect (Note: This means that the lines are always the Parallel Postulate (Euclid's 5 ${ }^{\text {th }}$ postulate)Through a point not on a line, there is point parallel to the line.		
Constructing parallel lines			
using the			
"Equidistant Method"			
Process:		\quad	Given: Line I and Point P NOT on I
:---			
Construct: A line through P parallel to I			

H.Geometry - Chapter 3 - Definition Sheet

Two Perpendiculars Conjecture	In a plane, if two lines are perpendicular to the same line, then the lines are

H.Geometry - Chapter 3 - Definition Sheet

| Constructing Parallel Lines
 using the
 "Two lines perpendicular
 to the same line"
 method
 Process:
 Constructing Parallel Lines
 using the
 "Rhombus" method | |
| :---: | :---: | :---: |

H.Geometry - Chapter 3 - Definition Sheet

H.Geometry - Chapter 3 - Definition Sheet

Section 3.6

Determining a Triangle	When all triangles constructed with given measures (some combination of side lengths and angles measures) are congruent.
Example	Use the following measurements to construct \triangle DOT 0 T
	D O

H.Geometry - Chapter 3 - Definition Sheet

Section 3.8

Definition of	Lines (or segments or rays) that _Two lines are ALWAYS concurrent, but 3 lines will not always be!)
Angle Bisector Concurrency Conjecture	The three angle bisectors of a triangle are ___

H.Geometry - Chapter 3 - Definition Sheet

	The three ___ of a triangle are concurrent.
\qquad of a triangle	The point of concurrency of the _____ of a triangle.
Concurrency Conjecture	The three ___ of a triangle are concurrent.
\qquad of a triangle	The point of concurrency of the _________ of a triangle.
Conjecture	The \qquad of a triangle is \qquad from the triangles 3 sides. (recall: angle bisector conjecture in lesson 3.4) COROLLARY: The incenter is the \qquad of the triangles inscribed circle (touches each side in exactly one point.)
Conjecture	The \qquad of a triangle is \qquad from the triangles 3 vertices (recall: perpendicular bisector conjecture in lesson 3.2) COROLLARY: The circumcenter is the \qquad of the triangles circumscribed circle (passes through each vertex of the triangle.)

H.Geometry - Chapter 3 - Definition Sheet

Section 3.9

Name	Concurrency of:	Special Properties:
Incenter		
circumcenter		
Orthocenter	Medians	

Are Medians Concurrent???

H.Geometry - Chapter 3 - Definition Sheet

Median Concurrencry Conjecture	The three ___ of a triangle are ___ .
\qquad of a triangle	The point of concurrency of the _____ of a triangle.
Conjecture	The \qquad of a triangle divides each \qquad into two parts, so that the distance from the centroid to the vertex is \qquad the distance to the midpoint. IN OTHER WORDS: (1) The distance from the centroid to the vertex is \qquad of the medians length. (2) The distance from the centroid to the midpoint is \qquad of the medians length.
	Section 3.8 (Exploration)
	- The "balancing point" of a figure - In physics, it's the imaginary point where an object's total weight is concentrated. - Questions: Where is the center of gravity of a triangle? Where is a human's center of gravity?
Center of Gravity Conjecture	The ___ of a triangle is the center of gravity of the triangular region
	A special line that contains 3 out of the 4 points of concurrency.
conjecture	The \qquad , the \qquad , and the \qquad are the three points of concurrency that always lie on the Euler Line.

H.Geometry - Chapter 3 - Definition Sheet

	Segment on Euler Line created by the three points of concurrency.		
conjecture	The \qquad divides the Euler segment into two parts, so that the smaller part is \qquad the longer part. IN OTHER WORDS: The longer part is twice as big as the smaller part.		
Points of Concurrency in Triangles			
Point Name	Concurrency of:	Special Properties	On Euler Line?
Incenter			
Circumcenter			
Orthocenter			
Centroid			

