	Section 1.1
Building Blocks of Geometry	Terms that cannot be defined, but can be described • • •
Definition	• A statement that clarifies or explains the meaning of a word or phrase.
Description of POINT	 The basic unit of Geometry Has no size; infinitely small Has only location Represented by a Named with capital block letter
Description of LINE	 A straight arrangement of Infinite length; no thickness Extends forever in two directions Named for anyon the line
Description of PLANE	 Flat; extends forever Has length and width; no thickness Represented by a Named usually with a
Collinear Points	Points that lie on the same
Coplanar Points	Points that lie on the same
Line Segment	 Consists of two points called (points at ends of segment) and all the points between them. Named by listing the endpoints with a

	Distance between the and so to t	
Longth (manager) of a	Distance between its' endpoints.	
Length (measure) of a	Two ways of writing:	
segment	XY = 2 inches $m\overline{XY} = 2$ inches	
	Segments with the same (length)	В
Congruent Segments	• Symbol:	
		A C
	A point that divides a segment into 2	segments
Midpoint of a segment	 The point is the same distance from endpoints 	
	• The midpoint is said to BISECT the segment	
Bau	Part of a line; begins at a point and extends	
Ray	in one direction	
	Named by using two points on the ray; lists of first	must be
	listed first	

	Section 1.2	
Angle (vertex and sides)	Two rays that share a not lie on the same line Vertex: Side:	provided the rays do
Measure of an angle	The amount of rotation in degrees Angle measures between to Measure has in front of the angle symle Full rotation: Half rotation: On-fourth rotation: 	bol
Reflex measure of an angle	The amount of rotation betwee (subtract from to get the measure)	n the sides of an angle

Congruent Angles	Two angles are congruent they have the same
	If figures are Example:
Angle Bisector	A is an angle bisector it divides the angle into two angles.
	Example:
Incoming and outgoing angles	Incoming:
	Outgoing:
	Incoming and outgoing angles are

Section 1.3		
Conditional Statement	A statement that is written in form. Ex:	
Part of a conditional: Antecedent and Consequent	Antecedent: Consequent:	
Part of a conditional: Converse Statement	The of a conditional (switch the antecedent and consequent) ***True conditional doesn't always have a true converse Example:	
Biconditional Statement	A single statement formed from a true conditional and true converse. IFF: Example:	
Counterexample	An example of an object that meets the criteria specified but isn't what you are trying to define. - Proves the conditional/bi-conditional false.	

Steps to creating good definitions.	(1) (2) (3)
Parallel Lines	Two lines are parallel IFF they are and do not Labeled with
Skew Lines	Two lines are skew IFF they are and do not and do not
Perpendicular Lines	Two lines are perpendicular IFF they at a
Right Angle	
Acute Angle	
Obtuse Angle	

Complementary Angles	Two angles are complementary IFF the sum of their measures is	
Supplementary Angles	Two angles are supplementary IFF the sum of their measures is	
Adjacent Angles (not in book)	Two angles are adjacent IFF they share a common common	and one
	NOTE: common side must be in the interior of the angle.	
Vertical Angles	Two angles are vertical angles IFF they are formed by two lines and are not	
Linear Pair of Angles	Two angles form a linear pair IFF they are shared sides form a	_ and the non-
	NOTE: A linear pair is	

Section 1.4			
Polygon		formed by connectingtwo	
Parts of a polygon: Sides	forming	g polygons.	
Vertices	where sides inte	ersect.	
Angles	Formed by 2	sides.	
Diagonal	A line segment that connects two _	vertice	€S.
Convex Polygons	Polygon in which no segment connection the polygon.	ecting any two vertices is	
Concave Polygons	The opposite of convex polygons.		
Classifying Polygons	3 sides = 4 sides = 5 sides = 6 sides = 7 sides = n-sides =	8 sides = 9 sides = 10 sides = 11 sides = 12 sides =	

Special Parts of polygons: Consecutive Vertices	The endpoints of one side () A D
Consecutive Sides	Sides sharing a common endpoint ()
Consecutive Angles	Two angles that share a common side ()
Naming a Specific Polygon	List by consecutive vertices, in order ()
Naming a Triangle	Use the symbol in front.
Congruent Polygons	Polygons are congruent IFF corresponding sides are and corresponding angles are
	Order of the vertices should show the correspondence.
Perimeter of a polygon	The of the lengths of it sides.
Equilateral Polygon	All sides are in measure (all sides are).
Equiangular Polygon	All angles are in measure (all angles are).
Regular Polygon	Has all equal in measure and all equal in measure. (It is).

	Section 1.5
Assumptions	Something you can accept as true without or
Things you CAN assume from a figure	(1)
	(2)
	(3)
	(4)
	(5)
Things you CAN'T assume from a figure	(1)
n onr a ngure	(2)
	(3)
Right Triangle	A triangle is a right triangle IFF exactly of its angles is a triangle.
Acute Triangle	A triangle is an acute triangle IFF of its angles are acute.
Obtuse Triangle	A triangle is an obuse triangle IFF exactly of its' angles is an triangle.

Scalene Triangle	A triangle is a scalene triangle IFF each of its' three sides have lengths.
Isosceles Triangle	A triangle is an isosceles triangle IFF at least of its' sides have equal length.
Equilateral Triangle	A triangle is equilateral IFF all three of it's sides have lengths.
	NOTE: An equilateral triangle is one type of triangle.
Median of a Δ	A median of a triangle is a segment joining a of the triangle to the of the opposite side.
	NOTE: All 3 medians are concurrent (meet @ one point).
Altitude of a Δ	An altitude of a triangle is a segment from a vertex of the triangles' to the line containing the side.
	NOTE: All three altitudes are also concurrent.

	Section 1.6
Trapezoid	A quadrilateral is a trapezoid IFF at least of opposite sides are Parts of a trapezoid: Bases: Legs:
	Base Angles:
Isosceles Trapezoid (not in book)	A trapezoid is an isosceles trapezoid IFF its' legs () are congruent.
Kite	A quadrilateral is a kite IFF it has distinct pairs of congruent sides.
Parallelogram	A quadrilateral is a parallelogram IFF pairs of opposite sides are NOTE: A parallelogram is one type of

Rhombus	A parallelogram is a rhombus IFF it has congruent sides ()
Rectangle	A parallelogram is a rectangle IFF it has congruent angles. () NOTE: Four angles are angles.
Square	A parallelogram is a square IFF it has four congruent and four congruent () NOTE: A square is both a and

	Section 1.7
Circle	The set of all points in a plant at a given from a given point.
Parts of a Circle	
Center	The given from which the circle is measured. A circle is named for its'
Radius (Plural:)	The from the center to a point on the circle Any from the center to a point on the circle. NOTE: All radii of a circle are
Chord	A segment whose lie on a circle
Diameter	The distance a circle through the center. A segment containing Diameter = NOTE: the diameter is the
Tangent	A line (in the plane of the circle) that a circle in exactly
Point of Tangency	Point of intersection of the circle and line.

Secant (not in book)	A line intersecting a circle at (Contains a).
Congruent Circles	Two circles with the
Concentric Circles	Two or more with the same center.
Arc of a circle	A part of a circle cut off by on the circle. Endpoints: the points at the Symbol:
Types of Arcs Semicircle	Arc whose endpoints are the endpoints of a of a circle Named with:
Minor Arc	Arcthan a semicircle Names with:
Major Arc	Arc than a semicircle. Named with:

Central Angle	An angle whose vertex is the of the circle.	of the circle, and whose sides are
Arc Measure	The number of of an arc. A full circle has an arc measure of Arc measure =	
	Named	
	NOTE: not the same as arc length	

	Section 1.8
Space	The set of points.
One-Dimensional Figures	Points lying on a Examples:,,,,
Two-Dimensional Figures	Points lying on a Examples:,,,,,
Three-Dimensional Figures	Points lying on a Examples:,,,
Isometric Drawing	A 2D drawing of a object showing 3-sides of the object in one view.

Some Types of	
	 Preimage and image are same size and same shape.
	- Preimage and image are same shape but different sizes
	 Preimage and image are different shapes but different sizes
Definition of	- A transformation preserving both and
	 Preimage and image are always Also known as a or

Types of Isometries

1. Translation (slide)

Definition:

Translation Vector: defines the ______ and _____ of a translation.

Example: Translating $\triangle ABC$ by vector f v.

2. Rotation (turn)

Definition:

Direction: ______ or ______.

Example: Rotating $\triangle GHI$ by -80° around point *P*.

• P

3. Reflection (flip)

Definition:

Reflection Line Conjecture: The reflecting line is the _____

of the segment between a preimage point and its image.

Example: Reflecting ΔJLK over line *m*: $r_m(\Delta JLK)$

4. Glide Reflection (walk)

Definition: a combination of a ______ and a _____

Sample:

