H.Geometry - Chapter 1 - Definition Sheet

	Section 1.1
Building Blocks of Geometry	Terms that cannot be defined, but can be described
Definition	A statement that clarifies or explains the meaning of a word or phrase.
Description of POINT	- The basic unit of Geometry - Has no size; infinitely small - Has only location - Represented by a \qquad - Named with capital block letter
Description of LINE	- A straight arrangement of \qquad - Infinite length; no thickness - Extends forever in two directions - Named for any \qquad on the line
Description of PLANE	- Flat; extends forever - Has length and width; no thickness - Represented by a \qquad - Named usually with a \qquad
Collinear Points	Points that lie on the same _______
Coplanar Points	Points that lie on the same
Line Segment	- Consists of two points called \qquad (points at ends of segment) and all the points between them. - Named by listing the endpoints with a \qquad .

H.Geometry - Chapter 1 - Definition Sheet

Length (measure) of a segment	- Distance between its' endpoints. - Two ways of writing: $X Y=2 \text { inches } \quad m \overline{X Y}=2 \text { inches }$
Congruent Segments	- Segments with the same \qquad (length) - Symbol:
Midpoint of a segment	- A point that divides a segment into 2 \qquad segments - The point is the same distance from endpoints - The midpoint is said to BISECT the segment
Ray	- Part of a line; begins at a point and extends \qquad in one direction - Named by using two points on the ray; \qquad must be listed first

H.Geometry - Chapter 1 - Definition Sheet

Section 1.2

Angle (vertex and sides)	Two rays that share a \qquad provided the rays do not lie on the same line Vertex: Side:
Measure of an angle	The \qquad amount of rotation in degrees - Angle measures between \qquad to \qquad - Measure has \qquad in front of the angle symbol - Full rotation: \qquad - Half rotation: \qquad - On-fourth rotation: \qquad
Reflex measure of an angle	The \qquad amount of rotation between the sides of an angle (subtract from \qquad to get the measure)
Protractor Used to measure \qquad Steps to using it: (1) \qquad (2) \qquad (3) \qquad	

H.Geometry - Chapter 1 - Definition Sheet

Congruent Angles	Two angles are congruent ___ they have the same
	If figures are \qquad , then measures are \qquad Example:
Angle Bisector	A \qquad is an angle bisector \qquad it divides the angle into two \qquad angles. Example:
Incoming and outgoing angles	Incoming:
	Outgoing:
	Incoming and outgoing angles are \qquad

H.Geometry - Chapter 1 - Definition Sheet

	Section 1.3
Conditional Statement	A statement that is written in \qquad form. Ex:
Part of a conditional: Antecedent and Consequent	Antecedent: Consequent:
Part of a conditional: Converse Statement	The \qquad of a conditional (switch the antecedent and consequent) ***True conditional doesn't always have a true converse Example:
Biconditional Statement	A single statement formed from a true conditional and true converse. IFF: \qquad Example:
Counterexample	An example of an object that meets the criteria specified but isn't what you are trying to define. - Proves the conditional/bi-conditional false.

H.Geometry - Chapter 1 - Definition Sheet

Steps to creating good definitions.	(1) (2) (3)
Parallel Lines	Two lines are parallel IFF they are \qquad and do not \qquad Labeled with \qquad -.
Skew Lines	Two lines are skew IFF they are \qquad and do not \qquad .
Perpendicular Lines	Two lines are perpendicular IFF they \qquad at a
Right Angle	
Acute Angle	
Obtuse Angle	

H.Geometry - Chapter 1 - Definition Sheet

Complementary Angles	Two angles are complementary IFF the sum of their measures is
Supplementary Angles	Two angles are supplementary IFF the sum of their measures is
Adjacent Angles (not in book)	Two angles are adjacent IFF they share a common \qquad and one common \qquad NOTE: common side must be in the interior of the angle.
Vertical Angles	Two angles are vertical angles IFF they are formed by two \qquad lines and are not \qquad _.
Linear Pair of Angles	Two angles form a linear pair IFF they are \qquad and the nonshared sides form a \qquad NOTE: A linear pair is \qquad

H.Geometry - Chapter 1 - Definition Sheet

Section 1.4

Polygon	A polygon is a closed plane figure, formed by connecting \qquad at their endpoints, with each segment intersecting \qquad two others.
Parts of a polygon: Sides Vertices Angles	\qquad forming polygons. \qquad where sides intersect. Formed by 2 \qquad sides.
Diagonal	A line segment that connects two ___ vertices.
Convex Polygons	Polygon in which no segment connecting any two vertices is \qquad the polygon.
Concave Polygons	The opposite of convex polygons.
Classifying Polygons	3 sides $=$ 8 sides $=$ 4 sides $=$ 9 sides $=$ 5 sides $=$ 10 sides $=$ 6 sides $=$ 11 sides $=$ 7 sides $=$ 12 sides $=$
	n -sides $=$

H.Geometry - Chapter 1 - Definition Sheet

H.Geometry - Chapter 1 - Definition Sheet

	Section 1.5
Assumptions	Something you can accept as true without _____ or _______
Things you CAN assume from a figure	(1) (2) (3) (4) (5)
Things you CAN'T assume from a figure	(1) (2) (3)
Right Triangle	A triangle is a right triangle IFF exactly \qquad of its angles is a \qquad triangle.
Acute Triangle	A triangle is an acute triangle IFF ___ of its angles are acute.
Obtuse Triangle	A triangle is an obuse triangle IFF exactly \qquad of its' angles is an \qquad triangle.

H.Geometry - Chapter 1 - Definition Sheet

Scalene Triangle	A triangle is a scalene triangle IFF each of its' three sides have \qquad lengths.
Isosceles Triangle	A triangle is an isosceles triangle IFF at least \qquad of its' sides have equal length.
Equilateral Triangle	A triangle is equilateral IFF all three of it's sides have \qquad lengths. NOTE: An equilateral triangle is one type of \qquad triangle.
Median of a Δ	A median of a triangle is a segment joining a \qquad of the triangle to the \qquad of the opposite side. NOTE: All 3 medians are concurrent (meet @ one point).
Altitude of a Δ	An altitude of a triangle is a segment from a vertex of the triangles' \qquad to the line containing the \qquad side. NOTE: All three altitudes are also concurrent.

H.Geometry - Chapter 1 - Definition Sheet

	Section 1.6
Trapezoid	A quadrilateral is a trapezoid IFF at least \qquad of opposite sides are \qquad Parts of a trapezoid: Bases: Legs: Base Angles:
Isosceles Trapezoid (not in book)	A trapezoid is an isosceles trapezoid IFF its' legs (\qquad are congruent.
Kite	A quadrilateral is a kite IFF it has \qquad distinct pairs of congruent \qquad sides.
Parallelogram	A quadrilateral is a parallelogram IFF ___ pairs of opposite sides are
	NOTE: A parallelogram is one type of _____

H.Geometry - Chapter 1 - Definition Sheet

Rhombus	A parallelogram is a rhombus IFF it has \qquad congruent sides \qquad)
Rectangle	A parallelogram is a rectangle IFF it has \qquad congruent angles. \qquad NOTE: Four angles are \qquad angles.
Square	A parallelogram is a square IFF it has four congruent \qquad and four congruent \qquad . (\qquad NOTE: A square is both a \qquad and \qquad

H.Geometry - Chapter 1 - Definition Sheet

	Section 1.7
Circle	The set of all points in a plant at a given \qquad from a given point.
Parts of a Circle Center Radius (Plural: \qquad	The given \qquad from which the circle is measured. A circle is named for its' \qquad The \qquad from the center to a point on the circle Any \qquad from the center to a point on the circle. NOTE: All radii of a circle are \qquad _.
Chord	A segment whose ___ lie on a circle
Diameter	The distance \qquad a circle through the center. A segment containing \qquad Diameter = \qquad NOTE: the diameter is the \qquad
Tangent	A line (in the plane of the circle) that \qquad a circle in
Point of Tangency	Point of intersection of the circle and line.

H.Geometry - Chapter 1 - Definition Sheet

Secant (not in book)	A line intersecting a circle at \qquad . (Contains a \qquad).
Congruent Circles	Two circles with the
Concentric Circles	Two or more ___ with the same center.
Arc of a circle	A part of a circle cut off by \qquad on the circle. Endpoints: the points at the \qquad Symbol:
Types of Arcs Semicircle Minor Arc Major Arc	Arc whose endpoints are the endpoints of a \qquad of a circle Named with \qquad Arc \qquad than a semicircle Names with \qquad Arc \qquad than a semicircle. Named with \qquad :

H.Geometry - Chapter 1 - Definition Sheet

Central Angle	An angle whose vertex is the \qquad of the circle, and whose sides are \qquad of the circle.
Arc Measure	The number of \qquad of an arc. A full circle has an arc measure of \qquad Arc measure = \qquad Named \qquad NOTE: not the same as arc length

H.Geometry - Chapter I-Definition Sheet

Section 1.8
Space

H.Geometry - Chapter 1 - Definition Sheet

Section 1.9

Definition of:

- A \qquad mapping of points
in a figure to points in a resulting figure
- Manipulating an original figure to get a new figure

The original figure

Preimage: $\triangle A B C$

- The resulting figure
- Notation: often indicated with primes (apostrophes)

Image: $\triangle A^{\prime} B^{\prime} C^{\prime}$
NOTE: \qquad correspondence:

- Each \qquad point has exactly one \qquad point
- Each \qquad point comes from exactly one \qquad
H.Geometry - Chapter 1 - Definition Sheet
Some Types of

H.Geometry - Chapter 1 - Definition Sheet
 Types of Isometries

1. Translation (slide)

Definition:

Translation Vector: defines the \qquad and \qquad
of a translation.

Example: Translating $\triangle A B C$ by vector $f v$.

H.Geometry - Chapter 1 - Definition Sheet

2. Rotation (turn)

Definition:

Direction: \qquad or \qquad .

Magnitude: the number of degrees to rotate.
Positive magnitude: \qquad
Negative magnitude: \qquad

Example: Rotating $\Delta G H I$ by -80° around point P.

H.Geometry - Chapter I-Definition Sheet

3. Reflection (flip)

Definition:

Reflection Line Conjecture: The reflecting line is the \qquad of the segment between a preimage point and its image.

Example: Reflecting $\Delta L K$ over line m : $r_{m}(\Delta L K)$
m

4. Glide Reflection (walk)

Definition: a combination of a \qquad and a \qquad
Sample:

