

Angle-Side-Angle
Congruence Conjecture
(ASA =)

If two angles and their included side in one triangle are congruent to two angles and included side in another triangle, then the triangles are congruent.

AMNO = 2 PQR

Side-Angle-Angle Congruence Conjecture $(SAA \cong)(AAS \cong)$

If two angles and their <u>non-included</u> side in one triangle are congruent to two angles and their corresponding <u>non-included</u> side in another triangle, then the triangles are congruent.

ASTU = A POR

Why are these not congruent??

The two sides aren't corresponding.

Note: AAS Case – is not sufficient in determining if triangles are congruent.

- a) write the congruence conference (555, SAS, ASA, AAS)
 By which you can say the tripolices are congruen
- b) write a compression statement for the trimbles (ex: ∆x32 ≥ SEX)

Section 4.6	
Recall: Triangle congruence shortcuts	SSS≅, SAS≅, AAS ≅ , ASA≅, HL≅, - Allows us to determine if triangles are congruent without having info on all 6 pairs of sides and angles.
CPCTC Theorem	"Corresponding Parts of Congruent Triangles are Congruent" - When you have two congruent triangles, use this to determing which parts of the triangles are congruent. Parts of a triangle:
	<u>sides</u> <u>altitudes</u> <u>midsegments</u> <u>angles</u> <u>medians</u> <u>etc.</u>

Ζ

Examples:

5.

In examples 1–5, use the figure at right to explain why each congruence is true. WXYZ is a parallelogram.

W

1. $\angle WXZ \cong \angle YZX$ AlaThm.

2. $\angle WZX \cong \angle YXZ \land IAThm$.

4. $\Delta WZX \cong \Delta YXZ$ ASA \cong

7. Given: M is the midpoint of WX M is the midpoint of YZ

Is
$$\overline{YW} \cong \overline{ZX}$$
?
Yes! $\Delta WYM \cong \Delta X \not\cong M$
by ShS \cong
 $-\overline{YW} \cong \overline{ZX}$ by CPCTC

8. Given: $\triangle E \subseteq E$ is isosceles

CD is the bisector of the vertex angle

Is
$$\overline{AD} \cong \overline{BD}$$
?
Yes! $\triangle ACD \cong \triangle BCD$ by SAS \cong $\overline{AD} \cong \overline{BD}$ by CPCTC

