\qquad
In exercises 1-3, say whether the transformations are rigid or non-rigid. Explain how you know.
1.

2.

3.

4. An ice-skate gliding in one direction creates several translation transformations. Give another realworld example of translation.
5. An ice skater twirling about a point creates several rotation transformations. Give another real-world example of rotation.

In Exercises 6-8, copy the figure onto graph or square dot paper and perform each transformation.
6. Reflect the figure across the line of reflection, line ℓ.

7. Rotate the figure 180° about the center of rotation, point P.

8. Translate the figure by the translation vector.

\qquad

For Exercises 9-14 transform each $\triangle P Q R$ on the coordinate plane by the given rule.
9. Translate 3 units left, 2 units up.

10. Translate 1 unit left, 4 units down.

11. Reflect across x-axis

12. Reflect across the y-axis

13. Rotate 90° clockwise about the origin.

14. Rotate 90° counterclockwise about the origin.

21. $\triangle R S E$ with O, a random point on $\overline{R S}$, are reflected across line p to create $\triangle R^{\prime} S^{\prime} E^{\prime}$. Which of the following statements are true? Explain how you know.
a. $\overline{R E} \cong \overline{R^{\prime} E^{\prime}}$
b. $\angle S \cong \angle S^{\prime}$
c. Points R^{\prime}, O^{\prime}, and S^{\prime} are collinear
d. The distance from S to line p is equal to the distance from S^{\prime} to line p.
22. $\triangle A B C$ with M, the midpoint of $\overline{A C}$, are translated to create $\triangle A^{\prime} B^{\prime} C^{\prime}$. Which of the following statements are true? Explain how you know.
a. $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$
b. $\angle C \cong \angle C^{\prime}$
c. M^{\prime} is the midpoint of $A^{\prime} C^{\prime}$
d. $\overline{B B^{\prime}} \cong \overline{M M^{\prime}}$

