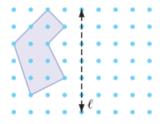
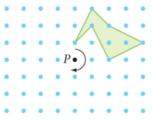
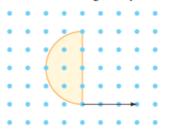

Name:


In exercises 1-3, say whether the transformations are rigid or non-rigid. Explain how you know.




- 4. An ice-skate gliding in one direction creates several translation transformations. Give another realworld example of translation.
- 5. An ice skater twirling about a point creates several rotation transformations. Give another real-world example of rotation.

In Exercises 6–8, copy the figure onto graph or square dot paper and perform each transformation.


**6.** Reflect the figure across the line of reflection, line  $\ell$ .

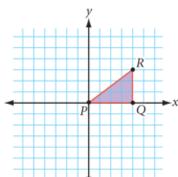


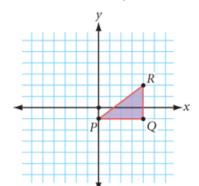
**7.** Rotate the figure  $180^{\circ}$  about the center of rotation, point *P*.

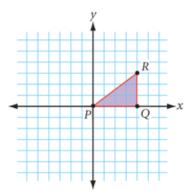


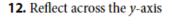
8. Translate the figure by the translation vector.

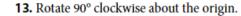


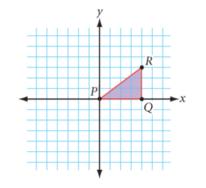

Name:


For Exercises 9–14 transform each  $\triangle PQR$  on the coordinate plane by the given rule.

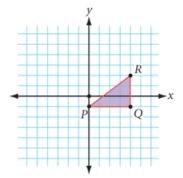




10. Translate 1 unit left, 4 units down.


**11.** Reflect across *x*-axis





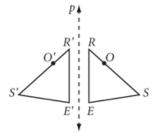


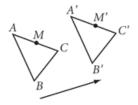










- **21.**  $\triangle RSE$  with *O*, a random point on  $\overline{RS}$ , are reflected across line *p* to create  $\triangle R'S'E'$ . Which of the following statements are true? Explain how you know.
  - a.  $\overline{RE} \cong \overline{R'E'}$
  - **b.**  $\angle S \cong \angle S'$
  - **c.** Points *R*′, *O*′, and *S*′ are collinear
  - **d.** The distance from *S* to line *p* is equal to the distance from *S'* to line *p*.
- **22.**  $\triangle ABC$  with *M*, the midpoint of  $\overline{AC}$ , are translated to create  $\triangle A'B'C'$ . Which of the following statements are true? Explain how you know.


a.  $\overline{AB} \cong \overline{A'B'}$ 

**b.**  $\angle C \cong \angle C'$ 

**c.** M' is the midpoint of A'C'

d.  $\overline{BB'} \cong \overline{MM'}$ 



